Hydrogen-rich saline prevents remifentanil-induced hyperalgesia and inhibits MnSOD nitration via regulation of NR2B-containing NMDA receptor in rats.

نویسندگان

  • L Zhang
  • R Shu
  • H Wang
  • Y Yu
  • C Wang
  • M Yang
  • M Wang
  • G Wang
چکیده

Remifentanil administration may subsequently cause paradoxical hyperalgesia in animals and humans, but mechanisms remain unclear. Manganese superoxide dismutase (MnSOD) nitration and inactivation caused by generation of reactive oxygen species and activation of N-methyl-D-aspartate (NMDA) receptors are involved in the induction and maintenance of central neuropathic pain. Hydrogen which selectively removes superoxide has gained much attention in recent years. In this study, we investigated antinociceptive effects of hydrogen-rich saline (HRS) on remifentanil-induced postsurgical hyperalgesia in a rat model of incisional pain. HRS was injected intraperitoneally 10 min before remifentanil infusion (1 μg kg(-1) min(-1) for 60 min). A selective NR2B antagonist Ro25-6981 was used to investigate whether antihypernociception of HRS is associated with NMDA receptor (NMDAR). Nociception was evaluated by the paw withdrawal mechanical threshold and thermal latency respectively. Then we assessed MnSOD, NR2A and NR2B in spinal cord dorsal horn via Western blot and immunohistochemistry after nociceptive tests. Here, we found that the analgesic effect of remifentanil was followed by long-term hyperalgesia lasting at least postoperative 7 days, which was accompanied with increase in NR2B expression and trafficking from cytoplasm to surface and MnSOD nitration in dorsal horn. Pretreatment with HRS (10 ml/kg) significantly attenuated mechanical and thermal hyperalgesia, blocked NR2B trafficking and MnSOD nitration in dorsal horn after remifentanil infusion. Ro25-6981 not 5 μg but 10 and 50 μg dosage-dependently attenuated hyperalgesia, and inhibited MnSOD nitration. Hyperalgesia and MnSOD nitration were attenuated after the combination of HRS (2.5 ml/kg) and Ro25-6981 (5 μg). In conclusion, HRS (10 ml/kg) might reverse remifentanil-induced hyperalgesia, through regulating NR2B-containing NMDAR trafficking to control MnSOD nitration and enhance MnSOD activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnesium sulphate attenuate remifentanil-induced postoperative hyperalgesia via regulating tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord

BACKGROUND Remifentanil induced hyperalgesia (RIH) is characterized by stimulation evoked pain including allodynia and thermal hyperalgesia after remifentanil infusion. N-methyl-D-aspartate (NMDA) receptor was reported to be involved in the progress of RIH. We hypothesized that intrathecal MgSO4 could relieve hyperalgesia after remifentanil infusion via regulating phosphorylation of NMDA recept...

متن کامل

Inhibition of Glycogen Synthase Kinase-3β Prevents Remifentanil-Induced Hyperalgesia via Regulating the Expression and Function of Spinal N-Methyl-D-Aspartate Receptors In Vivo and Vitro

A large number of experimental and clinical studies have confirmed that brief remifentanil exposure can enhance pain sensitivity presenting as opioid-induced hyperalgesia (OIH). N-methyl-D-aspartate (NMDA) receptor antagonists have been reported to inhibit morphine analgesic tolerance in many studies. Recently, we found that glycogen synthase kinase-3β (GSK-3β) modulated NMDA receptor trafficki...

متن کامل

Tyrosine phosphorylation of the N-Methyl-D-Aspartate receptor 2B subunit in spinal cord contributes to remifentanil-induced postoperative hyperalgesia: the preventive effect of ketamine

BACKGROUND Experimental and clinical studies showed that intraoperative infusion of remifentanil has been associated with postoperative hyperalgesia. Previous reports suggested that spinal N-methyl-D-aspartate (NMDA) receptors may contribute to the development and maintenance of opioid-induced hyperalgesia. In the present study, we used a rat model of postoperative pain to investigate the role ...

متن کامل

Prevention of Remifentanil Induced Postoperative Hyperalgesia by Dexmedetomidine via Regulating the Trafficking and Function of Spinal NMDA Receptors as well as PKC and CaMKII Level In Vivo and In Vitro

Remifentanil-induced secondary hyperalgesia has been demonstrated in both animal experiments and clinical trials. Enhancement of N-methyl-D-aspartate (NMDA) receptor trafficking as well as protein kinase C (PKC) and calmodulin-dependent protein kinase II (CaMKII) have been reported to be involved in the induction and maintenance of central sensitization. In the current study, it was demonstrate...

متن کامل

Correction: Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats

BACKGROUND Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia. METHODOLOGY/PRINCIPAL FINDINGS In a rat model of neuropathic pain induced by L5 spinal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 280  شماره 

صفحات  -

تاریخ انتشار 2014